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Abstract: Hippocampus is heterogeneous and can be divided into subregions with different functions, 
but the connectivity specificities of the hippocampal subregional structural networks are poorly 
known. Hence, in this study, we investigated the connectivity of hippocampal subregions at the 
network level. Then, we analyzed the changes of network attribute between normal group and 
epileptic group. The results indicate that compared with the normal group, the nodes of the epileptic 
group were reorganized, and the hippocampal subregional network tended to be modularized. In 
addition, the correlation matrix and p-value matrix after correction by FDR between the two groups 
also showed significant differences. The connection matrix of epileptic group shows a tendency of 
modularization. This is consistent with the results of BC. These findings provide more 
comprehensive insights for future research into the epilepsy. 

1. Introduction 

This Epilepsy has been associated with a spectrum of changes in hippocampal shape [1]. Structural 
abnormalities in the hippocampus are a common finding in epileptic studies [2], and human autopsy 
studies [3,4] have shown that subregions of the hippocampus are differently affected by 
neuropsychiatric disorders. Morphometric MRI (magnetic resonance imaging) has been the most 
efficient tool for studying the progression of structural damage in the human brain. Structural 
hippocampal connectivity has been widely described, but the connectivity specificities of the 
hippocampal subregional structural networks are poorly understood. 

It is well known that the hippocampus is heterogeneous and can be divided into subregions with 
different functions, connections to other regions of the brain, and susceptibility to disease [5,6]. The 
hippocampal parcellation with additional head, body, tail: it mimics the FreeSurfer 6.0 hippocampal 
module, i.e., no head/body subdivision for the hippocampal subregions [7]. Several histological 
studies have investigated the afferent and efferent projections of the hippocampus to other parts of the 
brain [6]. For example, the subicular and hilar/dentate regions, instead of the classically affected CA1 
region. are the main shape changes in patients with low-atrophy temporal lobe epilepsy. 
Hippocampal subregional structural networks could be generated from across-subject covariance of 
MRI derived morphometric features such as cortical thickness or gray matter volume [8]. 

We study the hippocampal network topology in healthy subjects and epileptic patients at the 
subregional level, which may serve as a basis for a better understanding of their physiological 
functions in health and disease.  
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2. Materials and Methods 

2.1 Participants 
Twenty consecutively selected patients with epilepsy confirmed with 

video–electroencephalography (EEG) and 20 age, gender, and handedness matched healthy controls 
were studied. All participants had history of focal seizures consistent with epilepsy. Controls had no 
psychiatric or neurologic disorder that could affect cognitive functioning. The study was approved by 
the Ethics Committee at Beijing Tiantan Hospital, Capital Medical University. No significant 
difference in gender and age was found between the two groups. The WAIS-RC (Wechsler adult 
intelligence scale of China revises) scores were significantly different, including VIQ (verbal 
intelligence quotient), PIQ (performance intelligence quotient) and FIQ (Full scale intelligence 
quotient). The demographic characteristics of the controls, the patients with epilepsy are summarized 
in Table 1. 

Table 1 Baseline characteristics 

Characteristic Controls  epilepsy  p 

 Mean SD Mean SD  
Subjects 20  20   
Sex(M/F) 11/9  8/12  0.379 
Handedness(L/R) 2/18  2/18  0.067 
Age(years) 29.05 7.86 24 1.84 1.000 
WAIS-RC(VIQ-score) 91.45 12.06 113.7 8.66 <0.001* 
WAIS-RC(PIQ-score) 96.1 12.28 109.6 10.65 <0.001* 
WAIS-RC(FIQ-score) 92.95 11.01 112.9 7.48 <0.001* 
Note: * is statistically significant (p <0.05); WAIS-RC: Wechsler adult intelligence scale of China 

revises; VIQ: verbal intelligence quotient; PIQ: performance intelligence quotient; FIQ: Full scale 
intelligence quotient. 

2.2 MRI Data Acquisition 

Each subject underwent two MR scans (T1-weighted and T2-weighted) at the Neurosurgical 
Institute of Beijing Tiantan Hospital, Capital Medical University using a Siemens Medical Solutions 
3T scanner. First, T1-weighted structural images were acquired (repeat time (TR) = 2300 ms; echo 
time (TE) = 2.32 ms; inversion time (TI) = 900 ms; flip angle = 8 degrees; field of view (FOV) = 
100×100 mm2; 192 slices; slice thickness = 0.9 mm; no gap; matrix = 256×256). Second, 
T2-weighted structural images were acquired (t2.tirm.cor.dark-fluid.3mm; TR = 9000 ms; TE =81 ms; 
TI = 2500ms; 25 slices; slice thickness = 3 mm; flip angle = 150 degrees; Spacing Between 
Slices=3.9; Field of View = 100×100 mm2; matrix = 320×224). 

2.3 Segmentation of hippocampal subfields 
All the images were preprocessed with FreeSurfer 6.0, which can be downloaded for public online 

(http://www.freesurfer.net/fswiki/DownloadAndInstall). This software generates an automated 
segmentation of the hippocampal subfields based on a statistical atlas built primarily upon ultra-high 
resolution (~0.1 mm isotropic) ex vivo MRI data [9]. This software has three modes of operation, 
depending on whether you only have a T1 scan or you have an additional MRI volume (any MRI 
contrast supported) containing the hippocampus. In this study, Mode B: segmentation with an 
additional scan (T2 scan containing the hippocampus) was used to obtain a more reliable 
segmentation. 

Figure 1 showed a sample multimodal segmentation, computed from a 1mm (isotropic) T1 and a 
0.68 x 0.68 x 3.0 mm (coronal) T2 scan, with the different hierarchical levels. The hippocampus is 
divided into 12 subregions, including parasubiculum, presubiculum, subiculum, CA1, CA3, CA4, 
GC-ML-DG, molecular_layer, HATA, fimbria, hippocampal_fissure and hippocampal _tail. When 
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this module has been run, we collected the volumes of the subregions of the hippocampus of all 
subjects and writed them in a single file - which can be easily analyzed with network subsequently. 

 
Fig. 1. Segmentation of hippocampal subfields. From left to right, top to bottom show sagittal, 

coronal, axial and three-dimensional views. The hippocampus is divided into 12 subregions, listed on 
the right side of the figure and differentiated through different colors. Note: CA2 is always included 

in CA3. 

2.4 Structural Network Generation 
We carried out an extra processing step on the volumetric features to eliminate the dimension 

effect. Consistent with the procedures in [10], we calculated the z-score of the volumetric features 
and used these values in pearson correlation. We use Pearson's normalized correlation between the 
hippocampal subregions to generate a R matrix (Pearson correlation coefficient matrix) and a P 
matrix (p values matrix), because in previous studies, the correlation between Pearson's regional gray 
volume was found to be a useful measure of structural connectivity [11-13]. The significance of the 
correlation coefficient in P was corrected by FDR (False discovery rate) [14,15]. In the corrected P 
matrix, the element with p<0.05 was considered to be significantly correlated between the two 
hippocampal subregions. In contrast, when p>0.05, it was considered that there was no correlation 
between the two hippocampal subregions. Where, the R matrix does not consider the positive and 
negative of the correlation value, but only considers the strength of the edge, so the resulting matrix is 
a symmetric matrix. Matrix is retained with full weight because studies have shown that connection 
strength contains important information about network architecture [16]. 

Density is the fraction of present connections to possible connections [17]. However, it is not 
possible to find an optimal density value to construct the correlation matrix. Therefore, brain 
scientists believe that the most effective and feasible method should set a density range to observe the 
changes in brain networks within a density range [18,19]. In this study, according to the actual 
network density range of the two groups, the measurement of network attribute parameters was 
calculated in the range of 6%-23% network density to ensure the robustness and comparability.  

In the hippocampal subregional structural networks, the matrix represents the graph of the 
subregions as the node, and the correlation strength between the subregions is taken as the edge 
weight. Figure 2 shows the process of constructing the structural network in the hippocampal 
subregions. 
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Figure 2. Workflow of this study. A: Segmentation of hippocampal subfields; B: Elements of the R 
matrix were equivalent to Pearson correlations between normalized hippocampal subregions gray 
matter volume pairs across subjects and elements of the P matrix were p value corrected by FDR 

(each data point in the display shows one subject); C: Networks were analyzed using various graph 
theoretic measures. 

2.5 Network analysis 

The network properties were computed using the Brain Connectivity Toolbox (BCT) [20]. To 
investigate the difference in hippocampal subregional structural network between patients with 
epilepsy and normal controls, we conducted a two-sample t-test on the properties of the network. The 
calculation was performed with IBM SPSS Statistics (version 24.0). The spatial distribution of hubs 
was visualized using the BrainNet Viewer toolkit [21] (Figure 2C). The multiple comparison was 
corrected with the false discovery rate (FDR) proposed by [14]. 

3. Results 

3.1 Small World Properties 

The hippocampal subregional structural network constructed by the above steps, the network 
density ranges of the normal group (5%-23%, interval 0.01) and the epilepsy group (6%-38%, 
interval 0.01) was obtained [22]. Density is the fraction of present connections to possible 
connections [17]. 

In this study, the Cp (cluster coefficient), the Lp (shortest path length), and sigma [23] is in the 
network to calculate the density of 6% to 23% range, to ensure that all the parameters calculation is 
not based on the density of a certain density value, on the larger degree in addition to select a 
particular network density error rate (Figure 3a, b, c). The network density shared by both groups was 
selected to ensure comparability. As shown in figure 3a, b and c, the sigma values of the normal group 
and the epileptic group were all greater than 1, indicating that they all had small-world properties. 
The Cp value of the epileptic group was only lower than that of the normal group when the network 
density was 6%, and higher than that of the normal group when the network density was 7% to 23%; 
Lp values were larger in the normal group than in the network density of 6% to 14%, and were 
smaller in the range of 15% to 23%. 
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3.2 Network Properties 

 
(a)                                                              (b) 

 
(c)                                                             (d) 

Figure 3. Cp value (a), Lp value (b), sigma value (c) and BC value (d), abscissa denotes network 
density when network density is between 6% and 23% in the epilepsy group and normal group. 

BC is the most widely used metric to measure the importance of a node in a network [24]. The BC 
of each node (Figure 3d), that pass through it, was calculated in order to characterize the centrality of 
the different hippocampal subregions [25]. In addition, the calculation of degree of BC (Betweenness 
Centrality) is based on the network density (16%), ensures that each group have the same number of 
edges and nodes, to ensure that the final calculated results reflect the network topology between two 
groups in the face of the change of the external attack, not just confined to the lower levels of nodes 
and edges of correlation contrast [18,19]. Then nodes are arranged from low to high according to the 
center of the node. Five nodes with the highest BC are chosen [25]. They are called hubs. In the 
normal group, hubs are: L_CA1, L_molecular_layer_HP, L_HATA, R_parasubiculum and 
R_fimbria. In the epilepsy group, hubs are: L_CA4, R_molecular_layer_HP, R_GC-ML-DG, R_CA3 
and R_CA4. In this case, the L is for the left, and the R is for the right. 

As shown in figure 3c, compared with the normal group, the nodes of the epileptic group were 
reorganized, and the hippocampal subregional network tended to be modularized. In addition, the 
correlation matrix and p-value matrix after correction by FDR between the two groups also showed 
significant differences (Figure 4). The connection matrix of epileptic group shows a tendency of 
modularization. This is consistent with the results of BC. 

240



 

 
Figure 4. The R matrix (left side figure) and binary P matrix after correction by FDR (right side figure) 

for the normal control group and the epilepsy group. The color bar shows the strength of the 
correlation with yellow as strong correlation. Black elements in binary P matrix indicate effective 

connections within 95% confidence interval. 

4. Discussion 

The sigma values of the normal group and the epileptic group were all greater than 1, indicating 
that they all had small-world properties. The small-world attribute is represented by higher Cp and 
shorter Lp [20], which not only has the high efficiency of processing local information in regular 
network, but also has the high efficiency of information transmission and integration in random 
network [26]. Cp and Lp are believed to be related to the cognitive ability of the brain, such as spatial 
resolution, executive ability, and brain functions such as intelligence [27]. The analysis of the above 
network properties also indicated that the topological parameters of the epileptic group were changed. 
This paper confirms these views from the network level. 

Compared with the normal group, the sigma values in the epileptic group were higher in the 
density of the network between 9% and 23%, indicating that the properties of the network in the small 
world were reduced and the efficiency of global information integration and transmission was 
reduced. Figure 4 shows that the network tends to be modularized, with the connection between the 
left and right hippocampal subregions reduced and the internal connection within the hippocampal 
subregions enhanced, which may be related to the compensation mechanism of the human body [28]. 
However, this disruption and change in the network structure may be the cause of the decline in the 
IQ of patients with epilepsy. 

5. Conclusions 
The main purpose of this paper is to analyze the differences of hippocampal subregional structural 

networks between normal group and epileptic group by graph theory. The results showed that there 
was a wide range of abnormalities in the hippocampal subregional structural networks in the epileptic 
group. The network topology and core nodes have been changed. The decreased network connection 
of the left and right hippocampal regions and the increased network connection of the internal 
hippocampal subregions may be related to the compensation mechanism of the brain. This change in 
network structure is likely to be a major factor in the decline in IQ (both VIQ and PIQ) in epileptic 
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patients. This paper can be used as a reference for future studies on the function of the hippocampal 
subregions and behavior. 
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